Multi-Threaded SIFT feature comparison

* Comparison based on biggest SIFT features
* Multi-threaded comparison of one image against a set
* Basic folder structure for importing new images into the set
master
Peery 6 years ago
parent 276db4b9fb
commit 32fcc04c14

@ -0,0 +1,178 @@
import os
import cv2
from ImageComparator import ImageComparator
from datetime import datetime
class ImageDB:
supported_file_extensions = [".png", ".jpg", ".jpeg"]
def __init__(self, root_path: str, import_folder: str = "import", db_folder: str = "images",
dump_folder: str = "duplicate",
folder_sep: str = "/", samples: int = 100, dist_thresh: float = 80,
match_thresh: float = 0.3, resize_dim: tuple = (500,500), threads: int = 2):
self.start_time = datetime.now()
self.root_path = root_path
self.import_path = self.root_path + folder_sep + import_folder
self.db_path = self.root_path + folder_sep + db_folder
self.dump_path = self.root_path + folder_sep + dump_folder
self.dir_sep = folder_sep
log_file = self.root_path + self.dir_sep + "db_log.txt"
self.imgcomp = ImageComparator(samples, dist_thresh, match_thresh, resize_dim, threads)
if not os.path.isdir(self.root_path):
os.mkdir(self.root_path)
self.log("Created {0} because it was missing ...".format(self.root_path), False)
if not os.path.isdir(self.import_path):
os.mkdir(self.import_path)
self.log("Created {0} because it was missing ...".format(self.import_path), False)
if not os.path.isdir(self.db_path):
os.mkdir(self.db_path)
self.log("Created {0} because it was missing ...".format(self.db_path), False)
if not os.path.isdir(self.dump_path):
os.mkdir(self.dump_path)
self.log("Created {0} because it was missing ...".format(self.dump_path), False)
self.log_stream = open(log_file, "w")
self.log("Calculating all features ...")
self.picture_data = self.calc_db_features()
self.log("Done!")
def log(self, msg: str, log_to_file: bool = True):
time = datetime.now() - self.start_time
msg = "[{0}] {1}".format(time, msg)
print(msg)
if log_to_file:
self.log_stream.write(msg+"\n")
self.log_stream.flush()
def process_all_images(self):
for file_name in os.listdir(self.import_path):
self.process_image(file_name)
self.update_db_features()
def process_image(self, img_name: str) -> bool:
"""
Processes a given image and decides if it is to be imported and then import or return.
Assumes image to be inside the import folder.
Indicates if it was imported via boolean
:param img_name:
:return:
"""
img_path = self.import_path + self.dir_sep + img_name
if self.is_supported_file(img_path):
result, matched, ratio = self.is_image_unique(img_path, self.picture_data)
if not result:
self.import_image(img_name)
return True
else:
self.log("Matched {0} to {1} with ratio {2}".format(img_name, matched, ratio))
self.move_to_dump(img_name)
return False
def import_image(self, img_name: str):
"""
Import the given image into the database.
Does no checks, just imports.
:param img_name: image file name, assumed to be located inside the import folder
:return:
"""
img_path = self.import_path + self.dir_sep + img_name
dest_path = self.db_path + self.dir_sep + img_name
if os.path.isfile(img_path):
os.rename(img_path, dest_path)
else:
raise Exception("Image path has not been a valid file!")
def move_to_dump(self, img_name: str):
"""
Move the given image to the dump folder.
:param img_name:
:return:
"""
img_path = self.import_path + self.dir_sep + img_name
dest_path = self.dump_path + self.dir_sep + img_name
if os.path.isfile(img_path):
os.rename(img_path, dest_path)
else:
raise Exception("Image path has not been a valid file!")
def is_image_unique(self, img_path: str, picture_data: dict) -> tuple:
"""
Check if the given image is already in the databank or not.
:param img_path:
:param picture_data:
:return:
"""
if len(picture_data) == 0:
return False, "", 0.0
result, matched, match = self.imgcomp.has_similar_match(img_path, self.db_path,
picture_data)
if result:
return True, matched, match
else:
return False, "", 0.0
def calc_db_features(self) -> dict:
"""
Calculate keypoints for every image in the database
:return:
"""
pictures = dict()
for name in os.listdir(self.db_path):
pic_path = self.db_path + self.dir_sep + name
if not self.is_supported_file(pic_path):
continue
img = cv2.imread(pic_path)
pictures[pic_path] = self.imgcomp.get_features(img)
return pictures
def update_db_features(self):
"""
Update the keypoint dictionary with only new image data
:return:
"""
for name in os.listdir(self.db_path):
pic_path = self.db_path + self.dir_sep + name
if not self.is_supported_file(pic_path):
continue
if pic_path not in self.picture_data.keys():
self.log("New image {0}! Calculating features for memory...".format(name))
img = cv2.imread(pic_path)
self.picture_data[pic_path] = self.imgcomp.get_features(img)
self.log("Done!")
def is_supported_file(self, path: str) -> bool:
"""
Returns if the given file has a valid picture file extension.
:param path:
:return:
"""
if os.path.isfile(path):
for ext in ImageDB.supported_file_extensions:
if ext in path.lower():
return True
print("{0} is not a supported file format!".format(path))
return False
def get_db_size(self) -> int:
"""
Return the number of images inside the databank
:return:
"""
size = 0
for entry in os.listdir(self.db_path):
if os.path.isfile(self.db_path+self.dir_sep+entry):
size += 1
return size

@ -0,0 +1,168 @@
import cv2
from ImageCompareThread import ImageCompareManageThread
import datetime
class ImageComparator:
concurrent_threads = 10
def __init__(self, samples: int = 100, dist_thresh: float = 80, match_thresh: float = 0.6,
resize_dim: tuple = (500, 500), concurrent_threads: int = 10):
self.results = {}
ImageComparator.concurrent_threads = concurrent_threads
self.icmt = None
self.samples = samples
self.dist_thresh = dist_thresh
self.match_thresh = match_thresh
self.resize_dim = resize_dim
self.sift = cv2.xfeatures2d.SIFT_create()
@DeprecationWarning
def match_images(self, path0: str, path1: str, sample_size: int = 100,
match_thresh: float = 0.8,
dist_thresh: float = 350,
diff_min: float = 1.5) -> bool:
"""
Matches the given images using SIFT featuring and euclidian distance comparison
of a random sample of keypoints.
True if at least match_thresh many keypoints
have been successfully matched (e.g. 0.9 -> 90%).
:param path0:
:param path1:
:param sample_size:
:param match_thresh: float from 0 to 1 in percent of keypoint matches required
:param dist_thresh: float in max distance of keypoints to match
:param diff_min: float by which the second closest match must be bigger
:return:
"""
start_time = datetime.datetime.now()
print("Creating feature lists ...")
ft0, des0 = self.get_features(cv2.imread(path0))
ft1, des1 = self.get_features(cv2.imread(path1))
print("Created feature lists!")
print(datetime.datetime.now() - start_time)
print("Looking for matches ...")
selection = self.__get_random_selection(des0, sample_size)
hits = self.find_matching_keypoints(des0, des1, sample_size, dist_thresh)
print("Looked for matches!")
print(datetime.datetime.now() - start_time)
match_ratio = hits / len(selection)
print("MatchRatio:{0} Hits:{1}".format(match_ratio, hits))
if match_ratio >= match_thresh:
return True
else:
return False
@DeprecationWarning
def find_matching_keypoints(self, keypoints1: list, keypoints2: list,
sample_size: int, dist_thresh: float) -> int:
"""
Find nearest neighbours for each point in keypoints1 in keypoints2.
Returns number of sufficiently matching keypoints
:param keypoints1:
:param keypoints2:
:param sample_size:
:param dist_thresh:
:return:
"""
selection = self.__get_random_selection(keypoints1, sample_size)
hits, sum = 0, 0
for i in range(len(selection)):
hit, dist = self.has_matching_keypoint(selection[i], keypoints2, dist_thresh)
if hit:
hits += 1
sum += dist
return hits
def get_features(self, img) -> tuple:
assert(img is not None)
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kp = self.sift.detect(grey, None)
kp = self.select_keypoints(kp, self.samples, (img.shape[1], img.shape[0]))
des = self.sift.compute(grey, kp)
return kp, des[1]
def select_keypoints(self, kps: list, samples: int, dimension: tuple):
"""
Select a good sample of keypoints among all keypoints.
:param kps:
:return:
"""
result = []
kps.sort(key=lambda x: x.pt[0]) # sort by x-coord
kps_left = kps[:len(kps)//2]
kps_left.sort(key=lambda x: x.pt[1])
kps_up_left = kps_left[:len(kps_left)//2]
kps_down_left = kps_left[len(kps_left)//2:]
kps_right = kps[len(kps)//2:]
kps_right.sort(key=lambda x: x.pt[1])
kps_up_right = kps_right[:len(kps_right)//2]
kps_down_right = kps_right[len(kps_right)//2:]
sample = samples // 4
for quad_kps in [kps_up_left, kps_up_right, kps_down_left, kps_down_right]:
quad_kps.sort(key=lambda x: x.response, reverse=True)
result += quad_kps[:sample]
return result
def has_similar_match(self, imgPath: str, dbPath: str, picture_data: dict) -> tuple:
"""
Calculate similarity of imgPath and all images in dbPath.
Returns as soon as a match has been found.
:param imgPath:
:param dbPath:
:param picture_data:
:return:
"""
# Calculating features
targImg = cv2.imread(imgPath)
targFeat, targDesc = self.get_features(targImg)
# Matching features
self.icmt = ImageCompareManageThread(imgPath, targDesc, picture_data, self.notify_result,
self.concurrent_threads, self.samples,
self.dist_thresh)
self.icmt.start()
self.icmt.join()
print("Done managing threads")
match = ""
value = 0.0
for key in self.results.keys():
if value < self.results[key]/self.samples:
value = self.results[key] / self.samples
match = key
if value >= self.match_thresh:
return True, match, value
else:
return False, "", 0.0
def notify_result(self, name: str, hits: int):
self.results[name] = hits
if hits/self.samples >= self.match_thresh:
print("[{0}] got a match! Aborting search ...".format(name))
self.icmt.searching = False

@ -0,0 +1,121 @@
from threading import Thread
from time import sleep
import numpy as np
import random
from scipy.spatial import KDTree
class ImageCompareManageThread(Thread):
def __init__(self, name: str, candidate_desc: np.array, descriptors: dict, callback,
concurrent_threads: int = 10, samples: int = 100, dist_thresh: float = 80):
super().__init__(name=name)
self.candidate_desc = candidate_desc
self.descriptors = descriptors
self.samples = samples
self.dist_thresh = dist_thresh
self.callback = callback
self.concurrent_threads = concurrent_threads
self.todo = []
self.threads = {}
self.searching = False
def run(self):
print("[{0}] Starting management ...".format(self.name))
self.searching = True
self.todo = list(self.descriptors.keys())
for i in range(self.concurrent_threads):
if len(self.todo) == 0:
break
key = self.todo.pop()
ict = ImageCompareThread(key, self.candidate_desc, self.descriptors[key][1],
self.samples, self.dist_thresh, self.finish_thread)
self.threads[key] = ict
ict.start()
while self.searching:
sleep(2)
def finish_thread(self, name: str, hits: int):
self.callback(name, hits)
print("[{0}] finished with {1}".format(name, hits))
print("{0} jobs left ...".format(len(self.todo)))
if len(self.todo) > 0 and self.searching: # still work to do, start another thread
key = self.todo.pop()
ict = ImageCompareThread(key, self.candidate_desc, self.descriptors[key][1],
self.samples, self.dist_thresh, self.finish_thread)
self.threads[key] = ict
ict.start()
else:
self.searching = False
class ImageCompareThread(Thread):
def __init__(self, name: str, candidate_desc: np.array, db_desc: np.array,
sample_size: int, dist_thresh: float, callback):
super().__init__(name=name)
self.candidate_desc = candidate_desc
self.db_desc = db_desc
self.samples = sample_size
self.dist_thresh = dist_thresh
self.callback = callback
def run(self):
print("[{0}] starting ...".format(self.name))
hits = self.find_matching_keypoints(self.candidate_desc, self.db_desc,
self.samples, self.dist_thresh)
self.callback(self.name, hits)
def find_matching_keypoints(self, keypoints1: list, keypoints2: list,
sample_size: int, dist_thresh: float) -> int:
"""
Find nearest neighbours for each point in keypoints1 in keypoints2.
Returns number of sufficiently matching keypoints
:param keypoints1:
:param keypoints2:
:param sample_size:
:param dist_thresh:
:return:
"""
hits, sum = 0, 0
for i in range(len(keypoints1)):
hit, dist = self.has_matching_keypoint(keypoints1[i], keypoints2, dist_thresh)
if hit:
hits += 1
sum += dist
return hits
def __get_random_selection(self, l: list, num: int) -> list:
result = []
for k in range(num):
result.append(random.choice(l))
return result
def has_matching_keypoint(self, point: np.ndarray, points: list, max_dist: float) -> tuple:
"""
Find nearest neighbour for point in points.
:param point:
:param points:
:param max_dist:
:return:
"""
tree = KDTree(points)
dist, ind = tree.query([point], k=2)
dist = dist[0] # just resolving nested lists
#print("Distances:{0} Indexes:{1} MaxDist:{2}".format(dist, ind[0], max_dist))
if dist[0] <= max_dist: # second neighbour is found, valid hit
return True, dist[0]
else:
return False, dist[0]

@ -0,0 +1,22 @@
from CompDatabase import ImageDB
from datetime import datetime
start_time = datetime.now()
# TODO save & load feature lists for the database, fix resized matching (injective resizing?)
root_folder = "Pictures"
import_folder = "import"
db_folder = "images"
samples = 200
dist_thresh = 80
match_thresh = 0.8
resize_dim = (500, 500)
threads = 4
img_db = ImageDB(root_folder, import_folder, db_folder, samples=samples, dist_thresh=dist_thresh,
match_thresh=match_thresh, resize_dim=resize_dim, threads=threads)
img_db.log("Starting work ...")
img_db.log("DB size: {0}".format(img_db.get_db_size()))
img_db.process_all_images()
img_db.log("Work done!")
Loading…
Cancel
Save